The following components are available in the 1.0 release:
- Canvas Extractor
- Google Classroom Extractor
- Schoology Extractor
- LMS Data Store Loader
Please see LMS Toolkit for more information about the purpose of these tools.
Note |
---|
The LMS Data Store Loader pushes CSV files, created by the extractors, into a SQL Server database. That database can be the same as an Ed-Fi ODS. However, all of the data are loaded into tables in the lms schema instead of the edfi schema. |
Warning |
---|
Python 3.9.5 has a bug that causes the extractors to crash, and thus should not be used. The Alliance's testing has used 3.9.4. |
Note |
---|
title | Note on Python Version |
---|
|
In practice, these tools have only been tested on Windows 10; however, these tools should work from any operating system that supports Python 3.9. |
The LMS Toolkit components can be installed into other Python scripts as dependencies, or they can run as stand-alone command line scripts from the source code.
Deck |
---|
|
Card |
---|
id | running-packages |
---|
label | From Packages |
---|
| The following commands install all fours tools into the active virtual environment; however, each tool is independent and you can install only the tools you need. Code Block |
---|
| pip install edfi-canvas-extractor
pip install edfi-google-classroom-extractor
pip install edfi-schoology-extractor
pip install edfi-lms-ds-loader |
Tip |
---|
To install the most current pre-release version, add the --pre flag on each command. |
We have developed sample Jupyter notebooks that demonstrate execution of each extractor paired with execution of the LMS Data Store Loader: |
Card |
---|
id | running-source-code |
---|
label | From Source Code |
---|
| The source code repository has detailed information on each tool. To get started, clone or download the repository and review the main readme file for instructions on how to configure and execute the extractors from the command line. |
|
Whether you run the extractors by incorporating into an existing Python package, or by using the stand-alone command line utility from the source repository, there are a number of required and optional arguments. When running with the command line tool, simply provide the --help
option for the full set of options for each extractor.
Applies To | Argument | Required? |
---|
Applies ToPurposeAll | Define which optional features are to be retrieved from the upstream system. Default: none. Available features: Activities : encompassing section activities and system activities.Attendance : attendance data. Only applies to Schoology.Assignments : encompassing assignments and submissions.Grades : section-level grades (assignment grades are included on the submissions resource). Experimental and only implemented for Canvas at this time.
Note: Sections, Section Associations, and Users are always pulled from the Source System. |
Log Level | No |
All | Valid options are: DEBUG, INFO (default), WARNING, ERROR, CRITICAL |
Output Directory | No |
All | The output directory for the generated CSV files. Defaults to: ./data . |
Sync database directory | No |
All | Directory for storing a SQLite database that is used in support of synchronizing the data between successive executions of the tool. Defaults to: ./data . |
Google Classroom | Classroom account | Yes |
, for GoogleGoogle Classroom | The email address of the Google Classroom admin account. |
Usage start date | No |
Google Classroom | Start date for usage data pull in YYYY-MM-DD format. |
Usage end date | No |
Google Classroom | End date for usage data pull in YYYY-MM-DD format. |
Schoology | Client key | Yes | Schoology client key. |
Client secret | Yes | Schoology client secret. |
Page size | No | Page size for the paginated requests. Defaults to: 200. Max value: 200. |
Input directory | No | Input directory for usage CSV files. |
Canvas | Base URL | Yes | The Canvas API base url. |
Access token | Yes | The Canvas API access token |
Start Date | Yes | Start date for the range of classes and events to include, in YYYY-MM-DD format. |
End Date | Yes | End date for the range of classes and events to include, in YYYY-MM-DD format. |
Tip |
---|
To retrieve multiple features with one call to the command line interface, list them out with spaces separating the values or commas. Examples: Code Block |
---|
# Two ways to get these three optional features:
poetry run python .\edfi_google_classroom_extractor -f activities, grades, assignments
poetry run python .\edfi_google_classroom_extractor -f activities grades assignments
# Retrieve only the "activities" data (in addition to the core data set).
# Note the use of the "long flag" intead of `-f`.
poetry run python .\edfi_google_classroom_extractor --feature activities |
|
The LMS Data Store Loader pushes the extractor-created CSV files into a SQL Server database, where the data are available for use via standard SQL Server interfaces and tools. However, the CSV files can also be consumed directly to perform many interesting analyses. We have a developed a set of Jupyter notebooks that demonstrate analytics tasks that can be performed in Python using the Pandas framework, reading raw CSV files. Sample output from these notebooks is visible directly in GitHub, without needing to run the code locally:
Deck |
---|
|
Card |
---|
default | true |
---|
id | logging-packages |
---|
label | From Packages |
---|
title | Logging configuration when installing from packages |
---|
| When you incorporate the LMS Toolkit components as package dependencies in other Python scripts, then you need to pass the log-level to the main facade class and you need to define the logging format. For example: Code Block |
---|
import logging
import sys
from edfi_schoology_extractor.helpers.arg_parser import MainArguments as s_args
from edfi_schoology_extractor import extract_facade
# Setup global logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
# Prepare parameters
arguments = s_args(
client_key=KEY,
client_secret=SECRET,
output_directory=OUTPUT_DIRECTORY,
# ----------- Here is the log level setting -----------
log_level=LOG_LEVEL,
# -----------------------------------------------------
page_size=200,
input_directory=None,
sync_database_directory=SYNC_DATABASE_DIRECTORY
)
# Run the Schoology extractor
extract_facade.run(arguments) |
|
Card |
---|
id | logging-source-code |
---|
label | From Source Code |
---|
title | Logging configuration when running from source code |
---|
| When running from source code, each extractor logs output to the console; these log messages can be captured in a file by redirecting output to a file: Code Block |
---|
language | bash |
---|
title | Redirect to file |
---|
| poetry run python edfi-canvas-extractor > 2021-05-02-canvas.log |
The above example assumes that all configuration has been placed into a .env file or environment variables. The log level defaults to INFO. You can lower the number of log messages by changing to WARNING, or get increased logging by changing to DEBUG. The log level can be set at the command line, in a .env file, or an environment variable (the exact environment variable name depends on the extractor; run the extractor with --help for more information). Code Block |
---|
language | bash |
---|
title | Set level to DEBUG |
---|
| poetry run python edfi-canvas-extractor --log-level DEBUG > 2021-05-02-canvas.log |
|
|
Each API has its own process for securing access. Please see the respective readme files for more information:
Given the LMS Toolkit deals with student data, both the filesystem and database (if uploading to SQL Server) are subject to all of the same access restrictions as the Ed-Fi ODS database.
The LMS Data Store Loader tool manages its own database tables. Thus the first time you run the tool, the credentials used to connect to SQL Server need to have the db_ddladmin
permission in order to create the necessary tables. Subsequent executions can use an account with more restrictive permissions, i.e. the db_datawriter
role.
The API's provided by these three learning management systems are well defined at a granular level. From a performance perspective, this means that the process of getting a complete set of data is very chatty and may take a long time to process. It is difficult to predict the exact impact, although generally the time will scale proportional to the number of course sections. Some of the API's also do not have any mechanism for restricting the date range or looking for changed data, resulting in each execution of the extractor re-pulling the entire data set.
If running on a daily basis, then we recommend running after normal school hours to minimize contention with network traffic to the source system. If running weekly, then it may be best to run over the weekend.
It should be trivial to call these programs from Windows Task Scheduler, Linux chron, or a workflow engine such as Apache Airflow.